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ABSTRACT
Meta-data annotations and AOP are a powerful combina-
tion. Several aspect-oriented languages already support the
use of annotations as a selection criterion in pointcut des-
ignators. Some languages also support the introduction of
annotations using aspect-oriented techniques. This paper
describes a combination of these techniques as they are im-
plemented in Compose*, our aspect-oriented language. The
use of a powerful selector language in Compose* is com-
bined with a mechanism to superimpose annotations. The
combination of these techniques enables us to specify the
derivation of annotations. Derivation relations between an-
notations lead to dependencies between selector expressions.
We investigate in what cases such dependencies are problem-
atic and present an algorithm that resolves the dependencies
and detects problematic cases.

1. INTRODUCTION
The concept of annotations has been introduced recently in
various programming languages, such as Java[14] and C#
[7], to enable the attachment of meta-data to program el-
ements. Although the attachment of annotations does not
any have direct influence on the execution of an application,
they can be used by compile-time tools or meta-facilities. In
this paper, we investigate the use of annotations in aspect-
oriented programming, discuss the problems of superimpos-
ing1 annotations, and present a solution to these problems
in the context of a concrete implementation of the Compose*
language[4][6].

This paper starts with a small example that explains the use
of annotations in .NET. In section 3, we show some problems
related to the use of annotations in state of the art program-
ming languages. To avoid these problems, we propose to
superimpose (introduce) annotations in an aspect-oriented
manner. In section 4, we show how the current superim-
position language of Compose* can be used to superimpose
annotations. However, when annotations can be both su-
perimposed and used as a selection criterion for superimpo-
sition certain dependency problems may arise. In section
5, we identify the cases where such dependency problems
occur. We introduce an algorithm that resolves the depen-

1i.e. introduction of annotations in the terminology of As-
pectJ [2]

dencies and detects dependency conflicts when annotations
are superimposed. We show that this algorithm terminates
in all cases. Finally, we conclude the paper with a related
work, discussion and the conclusion.

2. ANNOTATIONS IN .NET
1 [Persistent]
2 class Person {
3 String name;
4 int age;
5
6 [Update] public void setAge( int a){age = a;}
7 [Query] public int getAge(){ return age;}
8
9 [Update] public void setName(String n){name = n;}

10 [Query] public String getName(){ return name;}
11 }

Listing 1: Annotations in .NET (C#)

Listing 1 shows a simple C# class that has annotations at-
tached to a few program elements: the class Person and
some of its methods. The notation [Persistent] class Person
specifies that the program element Person class has the Per-
sistent annotation attached. Similarly, the setAge method
has the Update annotation attached.

Annotations can be used to express design intentions and
semantic properties of program elements. This allows for
designating program elements based on their semantic prop-
erties, instead of explicitly enumerating a list of elements in
pointcut specifications. For example, a persistence concern
can easily select only the classes that have the Persistent
annotation attached, without the need to enumerate (the
names of) classes that should be persistent.

In [13], it was pointed out that naming conventions, marker
interfaces and other techniques are used in practice to ex-
press meta-date in the absence of support for annotations.
There it was also show that such techniques reduce the
adaptability of applications as well as other desired software
engineering properties. However, the use of annotations is
not free of problems either, as will be explained in the next
section.

3. MOTIVATION
In current (OO) programming language implementations,
the annotations are always statically bound to certain pro-
gram elements, i.e. they are specified directly as part of
the source code of a class (as illustrated in the introductory
example, listing 1).
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This leads to two problems. The first problem is that an-
notations are scattered over the application source: if every
persistent class has the annotation Persistent directly bound
to its source, the annotations are scattered over the applica-
tion. In fact, we can state that the annotation Persistence is
therefore tangled with base classes (such as the class Person
in this example), because their code cannot be fully sepa-
rated. On the other hand, it is important to note that in
case of certain domains (e.g. security) programmers may
intentionally want to bind annotations statically to ensure
certain constraints in different applications. In this case, ev-
ery application that reuses a program unit with annotations
will have the same set of annotations.

The second problem is that annotations cannot be application-
specific. Suppose the class Person above would be reused in
two applications. In one application, it is part of a set of
classes that should be made persistent. Another applica-
tion has a different set of persistent classes, which does not
include the class Person. To work around this issue, the
applications would have to specify differently named anno-
tations in the reusable base classes (e.g. App1Persistent and
App2Persistent), thus ’polluting’ an otherwise reusable class
with application-specific information.

The problems of scattering and tangling are at the core of
aspect-oriented programming. Our first step toward a so-
lution is, therefore, to reuse an existing (aspect-oriented)
solution: by allowing annotations to be superimposed at all
the places where they should be attached in the source of a
concern. Note that similar observations have been made by
others, resulting in the ability to superimpose annotations
in e.g. AspectJ[1], JBoss[9] and AspectWerkz[3].

A related problem is that annotations may depend on each
other. That is, an annotation can be attached to a cer-
tain program element, if another—related— program ele-
ment has a certain annotation. To illustrate this, we refer
to the annotations attached to class Person in Listing 1.
As an example, we could define the following rule for the
member variables of a persistent class: if a class has the an-
notation Persistent, then each of its public methods without
annotation has to be marked with the annotation Query by
default. Practically, the attachment of a given annotation
may trigger the attachment of every other dependent anno-
tation.

One might ask why it is necessary to attach the annotations
Persistent or Create if their places can be designated by the
pointcuts that could express the rules above. Using such
pointcuts can be in fact sufficient when these annotations are
only used within pointcut expressions of aspects. However,
annotations might be used by other tools or frameworks as
well. For this reason, we propose to support the derivation of
annotations. In many cases, we can derive whether a certain
annotation should be attached based on the existence of
other annotations, certain types of statements or structural
combinations of program elements (i.e. ’software patterns’).
In many cases, this removes the need to manually specify
where annotations have to be attached (either in the concern
source or the source of the base application).

The next section explains how these observed problems are

addressed in our aspect-oriented framework based on .NET,
called Compose*.

4. SUPERIMPOSING ANNOTATIONS
This section is divided into three parts: first, we explain how
annotations can be used within pointcuts as a criterion for
selecting program elements in Compose*. Next, we explain
the mechanism of superimposing annotations, and discuss
how this helps to solve the problems mentioned in the mo-
tivation. Finally, we discuss how join point selection based
on annotations can be combined with the superimposition
of annotations to provide a technique to derive annotations.

4.1 Annotation-Based Join Point Selection
This section explains how the selector language in Compose*
supports the use of annotations.

Listing 2 shows part of an example ObjectPersistence con-
cern. The selector persistentClasses selects all classes that
have the BusinessObj annotation, using a predicate-based
selector language that can select program elements based
on the static structure of the application. In this example,
all program elements C are selected, provided that they are
classes that have the annotation A, which (as specified on
the 2nd line of the selector expression) must be a program
element of the annotation type that is named BusinessObj.

1
2 concern ObjectPersistence {
3 superimposition
4 selectors
5 persistentClasses =
6 {C | classHasAnnotation(C, A),
7 isAnnotationWithName(A, ’BusinessObj’)};
8 ...

Listing 2: Using annotations in Compose*

This particular selector can be used to implement persis-
tence in a concern separate from the rest of the code, with-
out the need to enumerate all the relevant classes in the
concern source.

4.2 Superimposition of Annotations
To solve the problem of scattered, statically bound annota-
tions, we would like to have a mechanism to specify groups
of annotations in a separate concern source. In this way,
annotations that pertain to a particular concern (such as
persistence, synchronization, security) can all be specified
in one place: the concern that they belong to. We introduce
a simple extension to the existing superimposition mecha-
nism in Compose*: a new language construct that specifies
the superimposition of annotations on a set of selected pro-
gram elements. Note that the selector mechanism itself does
not change: program elements can still be selected based on
their name, properties and relations to other program ele-
ments (i.e. based on the static structure of the application).

As an example, suppose that our application has a generic
DataStore class which has to be made persistent. This is
handled by the ObjectPersistence concern, which also marks
the object classes that should be persistent—keeping every-
thing that has to do with persistence in one place.

1 concern ObjectPersistence {
2 superimposition
3 selectors
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4 dataStoreClasses =
5 { C | isClassWithName(DS, ’DataStore’),
6 classInheritsOrSelf(DS, C) };
7 annotations
8 dataStoreClasses <- Persistent;
9 }

Listing 3: Superimposition of annotations

In listing 3, the class DataStore and its subclasses are se-
lected by the selector dataStoreClasses (line 4-6). The an-
notation Persistent will be attached to this set of selected
classes (line 8). If within another application a different set
of classes needs to be made persistent, this can be handled
easily because the annotation is now decoupled from the
base classes that it is attached to. In addition, the annota-
tions are no longer scattered over the application source, as
they are specified in one place only: the ObjectPersistence
concern source. This makes it easier to create more reusable
components.

The benefit of this approach is that it is possible to use com-
binations of static annotations in the (original) application
source and superimposed annotations. Thus, concerns can
query for annotations that may or may not have been at-
tached by other concerns—the concern itself does not (have
to) know in what manner and by whom the annotation was
attached. This enables a better separation of concerns, as
the dependencies between concerns can now be expressed
through annotations. In addition, annotations (even those
that are superimposed) can also be read by other tools and
frameworks, for example through the use of reflection.

4.3 Derivation of annotations
In the previous sections, we extended the selector language
of Compose* to use annotations as a selection criterion and
introduced a language construct to superimpose annotations
on a set of selected program elements.

These two features can be combined to achieve the deriva-
tion of annotations. To demonstrate what is meant by ’de-
riving’, and show how it can be used, we introduce another
example in listing 4, which will also be used in section 5 to
explain certain complications.

1 concern Synchronization {
2 filtermodule SyncModule {
3 // handle synchronization . .
4 }
5 superimposition {
6 selectors
7 updateMethods =
8 { Method | methodHasAnnotationWithName
9 (Method, ’Update’)};

10 queryMethods =
11 { Method | methodHasAnnotationWithName
12 (Method, ’Query’)};
13 syncedClasses =
14 { Class | methodHasAnnotationWithName
15 (Method, ’Synchronized’),
16 classHasMethod(Class, Method) };
17
18 annotations
19 updateMethods <- Synchronized;
20 queryMethods <- Synchronized;
21
22 filtermodules
23 syncedClasses <- SyncModule;
24 }
25 }

Listing 4: Derivation of annotations

Listing 4 describes a part of a simple synchronization con-
cern. The goal is to intercept all calls that touch the data
inside the object and synchronize calls to these methods2.
This concern assumes that all methods that read or write the
object state have the annotation Update or Query attached
in the original application source. The selector updateMeth-
ods (line 7-9) selects all methods in the program that have
the annotation Update, while the selector queryMethods
(line 10-12) selects all the methods that have the annota-
tion Query attached. The annotations part (line 18-20) then
superimposes the annotation Synchronized on the methods
selected by either of those selectors. Subsequently, the se-
lector syncedClasses (line 13-16) will select all the classes
that contain at least one synchronized method, and the fil-
termodules part of the superimposition specification (line
22-23) superimposes the SyncModule on only those classes.

The point of this mechanism is that annotations can be
derived based on a combination of other program element
properties and relations, including other annotations. This
can be useful to generate annotations automatically instead
of manually. In this particular case, it is probably still nec-
essary to mark methods as ’update’ or ’query’ methods by
hand (depending on the exact definition of ’update’/’query’
and the program elements that can be used within selectors).
However, in other cases it is possible to attach annotations
automatically, based on the (static) properties of the pro-
gram itself.

Based on the notion that a method updates object state,
other annotations can then be attached as well, as shown in
this example.

The derivation of annotations can be seen as a logical con-
sequence of extending the selector language to use annota-
tions, and at the same time, enabling the superimposition
of annotations using this extended selector language. How-
ever, the derivation of annotations can cause dependencies
between selectors, as the result of one selector can depend
on the (non-)existence of annotations that may have been
attached through another selector. In the next section, we
discuss the problems that can be caused by such dependen-
cies.

5. DEPENDENCY PROBLEMS
In the previous section we described a technique to super-
impose annotations on program elements. The pointcut ex-
pression (selector) that defines these program elements may
refer to the presence or absence of a particular annotation.
The derivation of annotations may result in dependencies
between selectors and superimposition. This section de-
scribes the problems that can be caused by such dependen-
cies, and presents a solution approach.

The problem caused by dependencies between selectors is
that the order of their evaluation may matter. For instance,
in the synchronization example (listing 4), one possible order

2Similar to attaching the synchronized attribute to a
method in Java. However, this way synchronization can be
application-specific and could even be implemented using
different scheduling techniques, e.g. using different strate-
gies to optimize for updates or queries.
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is to first evaluate updateMethods and queryMethods, then
superimpose the annotation Synchronized and then evalu-
ate syncedClasses. If we apply this order of evaluation, the
result is that every update and query method will have the
annotation Synchronized attached. However, if we evalu-
ate syncedClasses before the annotation Synchronized is at-
tached, the selector does not match the update and query
methods. Hence, the filtermodule SyncModule would never
be superimposed. As this simple example shows, different
orders of evaluation and performing the superimposition can
cause different results due to dependencies between selec-
tors.

Note that in this case there is just one level of dependen-
cies, but there could be another concern added, which again
depends on the presence of the annotation Synchronized.
To evaluate the selectors and perform the superimposition
statements in the right order, these dependencies have to be
detected. However, this means it must be determined which
order is the right one. One sensible guideline could be: ”if
selector Y depends on the superimposition of annotation A
on program elements selected by selector X, we have to eval-
uate X and superimpose A on the elements selected by X
before evaluating Y”.

These observations lead to three distinct issues:

1 It must be possible to detect when a selector depends
on another selector. However, depending on the ex-
pressiveness of the selector language it may not be pos-
sible to detect dependencies just by reasoning based on
the syntax of a selector.

2 There can exist multiple levels of dependencies, and
even circular dependencies might occur. This suggests
that some kind of iterative algorithm is needed to re-
solve the dependencies between selectors. However, if
circular dependencies occur, such an algorithm might
never terminate.

3 The word before implies an ordering. This means that
(a) the concern specification is non-declarative, (b) the
selector results may be different, depending on the or-
der of evaluation. For these reasons, a correct order
of evaluation should be resolved automatically (if pos-
sible), otherwise the order should be specified by the
user.

It is important to realize that all these issues depend on the
expressiveness of the selector language that is used. In the
next three subsections we clarify the problems stated above
by giving examples for each case, and investigate the root
cause of each problem.

5.1 Detecting dependencies
In case the selector language is based on a Turing-complete
language, it is impossible to detect dependencies between se-
lectors. Although this allows for powerful reasoning within
selectors, it makes it impossible to reason reliably about the
results of evaluation by looking at the syntax of selector ex-
pressions. This is for example the case in our Compose*
compiler3. To demonstrate the problem, consider the fol-
lowing selector:

3in fact, it is based on Prolog and uses a predefined set of
predicates to query a model of the program structure.

1 YSharesAnnotWithX =
2 {Y | isClass(Y), hasAnnotation(Y, A),
3 isClassWithName(X, ’X’),hasAnnotation(X, A)};

This example selects all classes Y that share at least one
annotation (bound to variable A) with class X. However,
we do not know which annotation is shared by both classes.
However, this information is needed to determine whether
this selector depends on the superimposition of a specific
annotation. It is clearly impossible to infer this from the
specification of the predicate. This case is a demonstration
of a more general problem: it is impossible to infer informa-
tion about the execution results (here: what values become
bound to each variable) from the syntax of a statement writ-
ten in a Turing-complete language.

A possible solution would be to restrict the expressiveness
of the selector language, such that it is (at least) no longer
Turing-complete. However, to make it practically feasible
to reason about selector expressions based on their syntax,
quite severe restrictions to the selector language are neces-
sary. We do not want to impose such restrictions on the
selector language used by Compose*, as we see the powerful
reasoning enabled by using a Turing-complete language as
a major feature.

Another possible solution is to look at the results of selector
evaluation; if the result of evaluating a selector changes af-
ter we have superimposed a certain annotation, there must
obviously exist a dependency. However, the reverse is not
true: the fact that the result does not change does not im-
ply that there is no dependency. It just does not occur given
the current combination of selectors, program elements and
annotations in the application under consideration. In other
words, by performing the evaluation of the selectors, we can
observe when dependencies occur, but we cannot detect po-
tential dependencies that are independent of a particular
application.

Hence, our approach to determine a correct order of evalu-
ation is based on trying all possible orders of evaluating the
selectors and superimposing annotations, and then observ-
ing the results. Such an iterative approach can also solve
the problem of multi-level (or even circular) dependencies.

5.2 Circular dependencies
The dependency resolution problem can be addressed by
iterating over every possible ordering of evaluating the se-
lectors and superimposing annotations, until a fixpoint is
reached. That is, the algorithm iterates until the state
(the set of selected program elements per selector) does not
change between two iterations (an annotation can only be
superimposed once on each program element—if it is at-
tached a second time in a later iteration, the results are
considered idempotent). In each iteration step, the super-
imposition of an annotation is performed and the selectors
are reevaluated to reflect the changes caused by the super-
imposition.

However, this leads to the second problem stated above:
can we guarantee that such an iterative procedure will ter-
minate? In certain cases, circular dependencies may cause
infinite loops. To illustrate such a case, we show an example
in listing 5.
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1 selectors
2 noA = {C|not(classHasAnnotationWithName(C,’A’))};
3 annotations
4 noA <- A;

Listing 5: Example of a circular dependency

The selector noA selects all classes that do not have the
annotation named A attached. Next, we specify that an-
notation A should be superimposed on these classes. After
executing the superimposition of this annotation and reeval-
uating the selector noA, it does not match any classes (as all
classes that did not have annotation A attached before do
have it now). This suggests the superimposition should not
actually have been executed. However, if we want to ’undo’
the superimposition, noA would again match the classes
where we removed the annotation. Hence, we would cre-
ate an infinite loop caused by what we will call negative
feedback between selectors and the process of superimpos-
ing annotations. In this case it is relatively easy to recognize
the problem, as the selector and superimposition are speci-
fied in one place; in reality, the selector and superimposition
specification may be divided over different concerns. This
example demonstrates that we cannot ensure that iteration
over selectors and superimposition of annotations will ter-
minate.

If a selector language does not have any means to express
negative dependencies, however, annotations would never
have to be removed in a later iteration because of the chang-
ing selector results (as occurs in the example above). In such
a language, the set of results for each selector would even-
tually become ’saturated’, as the number of both program
elements and annotations that can potentially be superim-
posed is finite. Thus, the algorithm would always reach a
fixpoint.

Based on these observations our conclusion is that infinite
loops can occur if and only if the selector language supports
any kind of ’not’ or ’exclusion’ operator. Unfortunately, re-
moving all types of exclusion operators from our selector
language is not an option: the ability to specify negative
dependencies is sometimes a very useful feature—a good ex-
ample would be to specify that classes that do not have any
Transient fields automatically get the annotation Persistent
superimposed.

5.3 Ambiguous selector specifications
The existence of exclusion operators in the selector language
leads to the third and last problem: superimposition speci-
fications and selectors are preferably declarative; their spec-
ification should not imply any ordering of superimposition.
However, different orders of evaluating the selectors and ex-
ecuting the superimposition of annotations do exist. As a
consequence, this may result in different sets of program el-
ements with different annotations attached. If this happens,
the concern specification is ambiguous and non-declarative.
We demonstrate this by the following example:

1 selectors
2 noA= {C|not(classHasAnnotationWithName(C, ’A’))};
3 noB= {C|not(classHasAnnotationWithName(C, ’B’))};
4 annotations
5 noA <- B;
6 noB <- A;

Suppose this concern is added to a program that has a class
with neither annotation A nor B attached. Thus, this class

is selected by both noA and noB. If we superimpose the
annotation B on it first (line 5) and then reevaluate the
selectors, the class does not match selector noB anymore,
so annotation A will never be attached. However, if we first
superimpose the annotation A (line 6), it does not match
selector noA anymore, so annotation B will not be attached.
In this case, the end results are different (either annotation
A or annotation B is attached). The specification is clearly
ambiguous, as there is no way to discern which order of
evaluation was intended by the programmer.

5.4 Summary
Based on the observations made in the previous sections,
we draw the following conclusions with respect to the de-
pendency problems:

• The expressiveness of the selector language in Com-
pose* does not allow reasoning about dependencies
based on the syntax of the selectors. In addition, there
can be multiple levels of dependencies (including cir-
cular dependencies). For these reasons, we apply an
approach based on the iterative evaluation of selec-
tor expressions and superimposition of annotations. A
similar approach (in an AOP context) was taken in
[11].

• Iterative resolution of dependencies will not terminate
(i.e. it leads to infinite loops) in cases where a circular
dependency occurs in combination with an exclusion
operator. We illustrated such a case in section 5.2.

• An important issue is that selectors and superimposi-
tion should be declarative, which means that the order
of attaching annotations should not matter. Implying
an ordering compromises the declarative nature of se-
lector specifications, which leads to problems regard-
ing evolvability: introducing additional selectors may
change the implied ordering. In addition, this makes
it harder for programmers to see what is actually se-
lected by a particular selector.

These conclusions are the foundation of our solution pro-
posal: an algorithm that considers all different orderings
in which the annotations can be superimposed, and iter-
ates over every possible ordering, until the set of selected
elements for each selector reaches a fixpoint. To address
the problem of infinite loops, we disallow the occurrence of
negative feedback between selectors and superimposition of
annotations. This means that selecting based on the absence
of an annotation that is attached by another concern will be
considered an error, as this causes negative feedback (hence,
the case described in listing 5 would be detected as prob-
lematic). Note that this does not limit the expressiveness
of the selector language itself: it is still possible to use ’not’
and other types of exclusion constructs. Additionally, we
do not allow for different results based on different orders
of attaching the annotations. In this way, ambiguous spec-
ifications (such as in listing 5.3) will also be considered an
error case. To detect such cases, our algorithm tries every
possible ordering.

Adding these restrictions does not only solve the problems
that have been mentioned in this section, but also makes
sense from a conceptual point of view: it is much easier (for
the programmer) to understand what is actually selected by
each selector, yielding a more robust language. In the next
section we explain the algorithm.
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6. DEPENDENCY ALGORITHM
This section describes an algorithm that implements the it-
erative resolution of dependencies, as discussed in the pre-
vious section. This means it tries every possible ordering
of superimposing the annotations specified in each concern
source. Meanwhile it checks for negative feedback and am-
biguous end-results. To describe this algorithm, we first
need to define a few terms more precisely:

• (Superimposition) selector : a selector expression (e.g.
S = {C|isClass(C)}) that returns a selector result.

• Selector result : a set of program elements selected by
a superimposition selector (i.e. the result of evaluating
a selector).

• (Superimposition) action : the act of attaching a spe-
cific annotation (A) to a set of program elements (se-
lected by S)4. An annotation can only be attached
once; if a program element already has an annotation
A attached, it will not be attached a second time by
executing a superimposition action.

• Iteration: in every iteration step, exactly 1 superimpo-
sition action is executed. All selectors are then reeval-
uated, rendering new (possibly different) selector re-
sults.

• Negative feedback : occurs when for any selector result
there exists a program element that was selected in
iteration i-1 but not in iteration i.

• State: the current set of selected program elements for
each selector, and a list of actions executed to reach
this situation.

• Endstate: a state where the execution of any super-
imposition action will not change any of the selector
results.

6.1 Inputs, outputs, variables
To describe the algorithm, we define its inputs and outputs
first. Inputs are modelled as follows:

1 selectors[0..s]:
2 superimposition selectors described by:
3 selector name, predicate, result variable
4
5 action[0..n]: superimposition actions, described by:
6 selector_name, annotation name

In addition, we define a State container object that contains
the following information:

1 Set selResults[0..s]:
2 for each selector, the set of selected
3 program elements
4
5 integer last_action:
6 the superimposition action (0..n) that was
7 executed to get to this state
8
9 integer prev_state:

10 a pointer to the state before last_action
11 was executed

The output can be either:
• An error condition (exception thrown) when the algo-

rithm detects that negative feedback occurred, or that
there are several endstates that have different selector
results.

4In this context we only consider superimposition of anno-
tations; we believe though, that the algorithm is equally
suitable for other program elements such as methods, fields
and filter modules

• An array of selector results, one for each superimposi-
tion selector in the application, representing the final
selector results.

6.2 Algorithm description
The algorithm basically implements a breadth-first search:
given the beginstate (where no actions have been executed
yet), it performs all of the possible superimposition actions
and adds a new State to a list of states if an action generates
selector results that differ from those in the current state and
the new state does not already occur in the list of states.
However, if any of the selector results shrinks by executing
an action (i.e. it misses at least one element in the new
state that was selected in the previous state) the algorithm
stops, because this is an error condition (negative feedback
between selectors). If executing any action in a particular
state does not render different selector results, that state is
marked as an endState. If there are several endstates, it is
checked that they all have the same selector results. After it
has handled a state, the algorithm tries the next state from
the list until there are no states left to handle.

Listing 6 describes this algorithm in pseudo-code.1 dependencyAlgorithm()
2 {
3 number_states = 1; // Total number of states .
4 current_state = 0; // Currently handled state .
5
6 // Define in i t ia l state
7 state[0].selResults = evaluate( selectors );
8
9 while (current_state < number_states)

10 { // Any state l e f t to be handled?
11 // assume endstate , until proven otherwise
12 currentIsEndState = true;
13 for (action = 0..n)
14 { // Try every possible action . .
15 // attach annotations to match current state
16 setAnnotationState(state, action);
17
18 newState.selResults = evaluate( selectors );
19 if (newState.selResults !=
20 state[current_state].selResults)
21 { // Selector results changed
22 // so this is not an end state
23 currentIsEndState = false;
24 if (for any i in 0..s:
25 newState.selResults[i] misses any elem
26 from state[current_state].selResults[i])
27 throw NegativeFeedbackException;
28
29 if (for any i in 0..number_states-1:
30 newState.selResults !=
31 state[i].selResults )
32 { // New state , add i t to l i s t of states
33 newState.last_action = action;
34 newState.prev_state = current_state;
35 state[number_states++] = newState;
36 } // new result found
37 } // selector changed
38 } // action loop
39
40 if (currentIsEndState)
41 { // No action rendered a different result =>
42 // current state is an end state
43 if (endstate == undefined or
44 endstate.selResults == newState.selResults)
45 // Correct endstate found
46 endState = state[current_state];
47 else
48 throw DifferentEndResultsException;
49 } // found an endstate
50
51 current_state++; // handle the next state
52 } // state handling loop
53
54 // return set of sel . elems . for each selector
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55 return endState.selResults;
56 }

Listing 6: Dependency algorithm pseudo-code

6.3 Termination of the algorithm
In this section, we show that this algorithm will terminate
in all cases. Non-termination could be caused only by the
while-loop in the algorithm (all for-loops have fixed num-
ber of finite iterations, there is no recursion in the algo-
rithm). This loop has the exit condition current state <
number states (both values are positive integers). In each
cycle, current state is incremented. However, number states
can potentially be incremented repeatedly within a single
cycle. This could cause the algorithm to never terminate.
Therefore, we inspect the circumstances under which num-
ber states is incremented. There are 3 possible cases when
executing an action within a cycle:

1 An action was executed that made at least one pro-
gram element disappear from a selector result set (i.e.
negative feedback occurred). This is an error condition
that will terminate the algorithm.

2 An action was executed that did not change any se-
lector result. This case will be ignored, because it has
been handled already. Like in case 1, number states
will not be incremented.

3 An action was executed that added at least one pro-
gram element to at least one selector result. If this
results in a case that has not been handled yet (the
worst case), number states is incremented.

Only in the third case is number states incremented. In that
case we are dealing with a monotonically increasing result
set (over several cycles). There is a finite set of program
elements that can be in each selector result set (the number
of program elements does not grow during the execution of
this algorithm). Therefore, case 3 will eventually cease to
occur, as there will be nothing left to add to any selector
result. This means that eventually case 2 or 1 will occur.

Because current state is increased in every cycle, and even-
tually no new occurrences of case 3 can be found, the algo-
rithm will always terminate eventually, when current state
equals number states.

7. RELATED WORK
The benefits of explicitly describing dependencies between
annotations are explained in [5]. The paper introduces a
technique to describe dependencies between annotations, as
well as a tool to enforce such dependency relations using a
dependency checker tool. The work motivates how the con-
cept of declaring and enforcing dependencies between anno-
tations can be used to model and enforce domain-specific
restrictions on top of a common purpose programming lan-
guage such as C#. Our work addresses the derivation of
related annotations, by introducing a technique to not only
declare relations between annotations, but also realize the
automatic derivation of such relations.

R. Laddad investigates the application of meta-data in com-
bination with AOP in [12]. In this article, he gives practical
hints in what situations the application of annotations in
combination with AOP (particularly, AspectJ) can be use-
ful. In our paper, we also showed some new ways of using

annotations in combination with AOP, e.g. by allowing the
superimposition and derivation of annotations.

The latest versions of AspectJ [1] and JBoss [9] support
the use of annotations: join points can be designated by
referring to annotations corresponding to those join points.
Similar to the superimposition mechanism in Compose*, the
introduction of annotations is also supported in these lan-
guages. The main differences are in the expressiveness of
the pointcut languages and the way of specifying the intro-
duction of annotations. Both AspectJ and JBoss have only
a limited pointcut language (i.e. type patterns with the
support of inheritance) for selecting program elements into
which annotations can be introduced. In contrast, the se-
lector language of Compose* allows for specifying arbitrary
complex queries to select program elements for introduc-
tions. This selector language also provides the ability to
specify dependencies between annotations, hence enabling
the automatic derivation of annotations.

The problem of resolving multiple levels of dependencies
also occurs in the domain of source code transformations.
JTransformer [10] is a transformation tool that uses a lan-
guage named Conditional Transformations to specify source
code transformations. The expression power of this language
to specify transformations (i.e. expressing which elements
should be transformed) is intentionally limited: it allows
for reasoning about dependencies between transformations
based on the syntax of the transformation specification (i.e.
even without the context of a particular application). This
enables the detection of potential conflicts between transfor-
mation specifications, even if a conflict may not occur in all
applications to which such a (potentially conflicting) com-
bination of transformations could be applied. However, the
use of a Turing-complete selector language in Compose* did
not allow for using a similar approach. Note that there is
a trade-off here: The approach of Conditional Transforma-
tions allows for detecting inherent (application independent)
conflicts in the specification by offering a transformation lan-
guage with a limited expression power. On the other hand,
Compose* offers an expressive selector language for super-
imposition, however, our dependency resolution algorithm
can detect only application-specific conflicts.

8. DISCUSSION
The superimposition and derivation of annotations as de-
scribed in this paper has been implemented as a module
in Compose*. A limitation in the current version is that
parameters of annotations cannot be queried yet. Also,
we intend to add support for writing superimposed anno-
tations back to the IL code (to support non-aspect oriented
frameworks). This functionality has not been implemented
yet (i.e. superimposed annotations can only be used within
Compose*).

One may consider a case where design information is intro-
duced through superimposition (without derivation rules)
and then the occurrences of that same property are used in
a pointcut expression to select join points. This is a pro-
gramming style that our approach is not aiming at, as this
could have been expressed directly in a single pointcut ex-
pression.
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The use of derivation of annotations in several concerns
could make it hard for a programmer to keep track of what
will match a certain selector expression. However, by ensur-
ing the declarativeness of selector expressions and superim-
position of annotations, we believe that we could keep the
use of this mechanism as straightforward as possible for the
programmers.

Finally, we observed that by disallowing negative feedback,
the order of superimposing the annotation can never lead
to different end results. We consider proving this obser-
vation as one of our future work. This would mean that
just disallowing (and detecting) negative feedback is actu-
ally sufficient to ensure the declarativeness of selectors in
Compose*—the check for different end results may be su-
perfluous.

9. CONCLUSION
Nowadays, the technology for using annotations together
with AOP is becoming available, as more and more aspect-
oriented languages support the designation of join points
through annotations. The introduction (superimposition) of
annotations is not a new idea either; a few aspect-oriented
languages have already started to support the introduction
of annotations over multiple program elements. However,
as we discussed in the related work section, these AOP lan-
guages offer relatively simple static pointcut languages to
express the locations where annotations (or other program
elements, such as fields or methods) can be introduced. To
support the introduction of annotations with an expressive
pointcut language in Compose*, first we analyzed the use
of annotations and identified problems related to their us-
age in .NET. Based on this analysis, we proposed a mecha-
nism in Compose* to superimpose (i.e. introduce) anno-
tations with an expressive static pointcut language. We
achieved this pointcut language by adopting the current se-
lector language of Compose*, which is a predicate-based,
Turing-complete query language. This language allows for
specifying complex queries to select program elements on
which annotations can be superimposed. Queries can also
select program elements based on the annotations that are
already attached to program elements. By superimposing
annotations through queries that select program elements
based on other annotations, we could achieve the automatic
derivations of dependent annotations. However, the con-
sequence of this derivation technique is that there will be
dependencies between the evaluation of queries and the su-
perimposition of annotations. We analyzed these dependen-
cies and identified cases where dependency problems may
arise. Based on this analysis, we designed an approach and
an algorithm to resolve the above mentioned dependencies
and detect the possible dependency problems. We showed
that this algorithm will always terminate either by provid-
ing a correct resolution of the dependencies, or detecting if
the superimposition specification is ambiguous.

Note that the proposed superimposition mechanism is generic,
since the selection language is not only applicable to the in-
troduction of annotations but also to other type of introduc-
tions. For example, the selection language can be applied
to introduce methods in the same way as we introduced an-
notations. When a method is introduced and this method
is referred to by another superimposition specification, the

same dependency issues will arise that we identified at the
introduction of annotations. For this reason, the proposed
algorithm is also applicable to resolve these dependencies or
detect the possible problems in the superimposition specifi-
cation.

By extending Compose* to enable the superimposition of
annotations, it is possible to separate the annotations from
implementation classes, thus preventing the scattering of
annotations. Also, this enables better separation between
concerns, as they can select program elements based on the
existence of annotations that may or may not have been at-
tached by other concerns. By supporting the derivation of
annotations, dependent annotations (and complete annota-
tion hierarchies) can be automatically superimposed. In this
way, the inconsistencies caused by the manual attachment
of such annotations can be avoided as well.
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